
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, 1-xxx (xxxx)

A New Seed-Set Finding Approach for
Iso-Surface Extraction

CHUAN-KAI YANG AND CHIANG-HAN HUNG
Department of Information Management

National Taiwan University of Science and Technology
Taipei, 104 Taiwan

Iso-surface extraction is one of the most important approaches for volume

rendering, and iso-contouring is one of the most effective methods for iso-surface

extraction. Unlike most other methods having their search domain be the whole dataset,

iso-contouring does its search only on a relatively small subset of the original dataset.

This subset, called a seed-set, has the property that every iso-surface must intersect with

it, and it could be built at the preprocessing time. When an iso-value is given at run time,

an iso-contouring algorithm starts from the intersected cells in the seed-set, and

gradually propagates to form the desired iso-surface(s). As a smaller seed-set could

offer less cell searching time, most existing iso-contouring algorithms concentrate on

how to identify a minimal seed-set. In this paper, we propose a new and efficient

approach for the construction of a relatively small seed-set. This presented algorithm

could reduce the size of a generated seed-set by up to one or two orders of magnitude,

compared with other previously proposed linear-time algorithms.

Keywords: Iso-Surface Extraction, Iso-Contouring, Seed-Set, Min-Max Span Space,
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1 INTRODUCTION

Volume rendering has been a very important research field in recent years due to its

wide applications in various areas, including medical diagnosis, numerical simulations,

education and entertainment, etc. While there are numerous techniques of volume

rendering, iso-surface extraction is one of the most popular approaches. In general, an

iso-surface extraction process consists of two phases, cell searching and triangle

generation. As the procedure of the second phase is nearly fixed, most of the current

research therefore concentrates on reducing the time spent in the first phase, and among

such, iso-contouring is one of the most effective methods. The idea of iso-contouring is

to first identify a subset called seed-set, which has the property that every iso-surface

must intersect with it. By assuming a continuous variation over the scalar fields defined

on the cells of a dataset, an iso-contouring algorithm propagates from the intersected

cells in the seed-set to form the desired iso-surface(s). Compared with other iso-surface
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extraction methods, the benefit of iso-contouring is two-fold. First, the generated iso-

surface could be readily converted into triangle strips, which could significantly reduce

the traffic sent to the graphics card during the rendering stage, thus speeding up the

rendering performance. Second, the size of the cell search domain is often dramatically

decreased, and therefore the search time for finding the cells intersecting with the iso-

surface is also minimized. Furthermore, many other techniques that help to reduce the

cell search time could also be applied, such as interval trees, leading to even better

overall performance. Compared with the original dataset, the derived seed-set size is

often relatively smaller so that we could quickly locate where to start the iso-surface

propagation. This defines the very goal of the preprocessing for an iso-contouring

algorithm. Inspired by the min-max span space representation proposed by [15], we

observed that a seed-set of a dataset could be constructed in a brand-new way, which will

be explained in the ensuing sections. This observation leads to a fairly simple

implementation but with high efficiency. In addition, our proposed method is

independent of other optimization techniques, such as the one proposed by Bajaj et al. [2,

3, 4]; in other words, our method could be applied together with their approaches. For

example, it can be shown that when combined with the existing volume thinning

approach, the size of the resulting seed-set could be further reduced to be about 140 times

smaller than the one by using the volume thinning approach alone.

The rest of the paper is organized as follows. Section 2 reviews the related work on

iso-surface extraction, while section 3 details the technique of volume thinning, which

serves as a comparison and test-bed for our proposed approach, and the concept of min-

max span space, whose representation of a dataset inspires our new idea for seed-set

construction. Section 4 presents our new algorithms, which could be viewed as new ways

for minimizing a seed-set. Section 5 demonstrates the efficiency of our method when

compared and/or combined with the volume thinning approach. Section 6 concludes the

paper and envisions the potential future directions.

2 RELATED WORK

Many techniques for volume rendering have been developed, and these techniques

can be classified into two big categories: direct volume rendering, such as raycasting [13,
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14], and indirect volume rendering, such as iso-surface extraction. Lorenson’s marching

cubes method [12] pioneered the research on iso-surface extraction. There are two phases

during the iso-surface extraction process, namely the cell searching and triangle

generation. While the procedure for second phase is quite standard now, except for the

ambiguity problem, the first phase still leaves roomfor further improvement.

There are essentially three schools of thoughts on reducing the cell searching time.

The first type is to employ a space-based approach, such as the method proposed by

Wilhelms et al. [18] to make use of octrees. The second type is to apply a range-based

approach, such as the ones proposed by Gallagher [8], and Livnat et al. [15]. Shen et al.

[16] later further improved the searching time complexity by using a uniform partition in

the area of the 2D plane defined by x y, the only area where all the cells of a dataset

can fall into. This is also called the min-max span space representation, which will be

detailed later. Yet another method, proposed by Cignoni et al. [6], demonstrated how to

use the concept of interval trees to answer an iso-surface query, which is essentially a

stabbing query first mentioned in the field of computational geometry [7], to achieve the

optimal time complexity for searching. An interval tree is a hierarchical data structure

built at the preprocessing time, so that an iso-surface query could be answered at run time

with a logarithmic time complexity. The third type is to utilize a surface-based approach,

which at its preprocessing stage identifies a subset of the original dataset, called a seed-

set, and then at run time propagates to form the entire iso-surface(s) from the intersected

cells within the seed-set. The way of identifying a seed-set from the dataset distinguishes

the methods of this type. Itoh et al. [9] proposed to build a seed-set through an extremum

graph, which is originally consisted of the local maximum and local minimum points.

These extremum points are connected to form a graph so that at run time, as each iso-

surface must intersect with such a graph, the intersected cells can be located and

propagated to form the entire iso-surface(s). However, an iso-surface can be either closed

or open, while the above approach is only suitable when the target iso-surface is closed.

In order to cope with open iso-surfaces, boundary cells are sorted and included as well,

but the inclusion of boundary cells may incur great overheads. To address this issue, they

later proposed a volume thinning approach to form a skeleton from the original dataset,

and this skeleton alone could serve as a seed-set [10], thus eliminating the need of sorted

boundary lists. By observing some basic property of a seed-set, Bajaj et al. proposed an
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algorithm [2], which initially treats the whole dataset as a seed-set then gradually reduces

the redundant cells by a sweeping paradigm. Their algorithm first defines the range of a

face (edge or vertex) connecting two cells to be the iso-value range within which if one

cell intersects with the corresponding iso-surface, the other cell will also be enumerated

through the same face (edge or vertex) during the surface propagation process. Then for a

cell, one fundamental property is that, if the union of ranges of its faces (edges and

vertices) contains its range, the cell can be removed. Kreveld et al. developed an

approximation algorithm [11] by constructing a contour tree which contains the local

maximal, local minimal and saddle points. And for the first time, it can be proved that

their method can generate a seed-set that is at most twice the size of the optimal seed-set

size. However, the required worst-case running time is O(N2) for 3D meshes. By making

use of the idea of a contour tree, Bajaj et al. later proposed several methods that could

trade the seed-set size for timing efficiency [3]. One of these methods is called greedy

climbing, which tries to select the seed cell that allows us to “climb” or “descend” as 

much as possible in the contour tree. This algorithm, though faster than the original

contour tree approach, still requires worst-case O(N log N) time complexity as it involves

the operations of priority queues. To further speed up the seed-set construction process,

another method, called sweep filtering, is also proposed. Without the use of priority

queues, this approach proceeds by ensuring that the selected seeds always fall on the

extrema of the contours in the current sweeping direction. Though a linear-time

algorithm, the resulting seed-sets are often much larger, as will be shown in the

performance results section. Our approach, on the other hand, may not be able to produce

the seed-set as small as the one by the method of contour tree or greedy climbing, is a

linear-time algorithm that could often generate seed-sets with a relatively small size, and

at the same time being relatively easy to implement. Essentially it strikes a good balance

between the timing constraint and the seed-set size.

Among the described related work, we will further detail the min-max span

space and volume thinning approach in later sections as they serve as the foundations

for our new approach.

3 BACKGROUNDS
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3.1 Volume Thinning

Itoh et al.’s volume thinning approach [10] provides an efficient way to construct a seed-
set. Its basic concept is to first identify the extremum points from a dataset. An
extremum point is either a local maximum or local minimum, in other words, a
maximum or minimum compared to all of its neighbors. Starting from the whole dataset,
with those extremum points initially marked as non-removable, cells that will not affect
local connectivity are removed. Here a cell denotes a cube which has eight scalar values
defined on its eight corner points, respectively. The entire process proceeds as if the
whole volume gets thinner and thinner, and eventually a skeleton is formed. See Figure 1
(modified from [10]) for a demonstration of a 2D thinning process.

Figure 1. A 2D volume thinning process. On the left: the original dataset, where the extremum

points are marked with dark gray. On the right: the resulting skeleton after a thinning process.

3.2 Min-Max Span Space

Livnat et al. proposed Min-Max span space to solve the cell searching problem in

iso-surface extraction [15]. As our new approach is inspired by this representation of a

dataset, it is necessary that we explain its basic concept before illustrating our new idea.

A min-max span space, as shown in Figure 2, is a 2D representation of a volume dataset,

where each cell (cube or tetrahedron) is denoted by a point. The x coordinate of a

point represents the minimal scalar value defined on the corresponding cell, while y

coordinate the maximal scalar value. As each cell’s minimal scalar valuecannot be

greater than its maximal scalar value, all the points must fall within the half plane

corresponding to the equation of x ≤ y. Moreover, using this representation, and

given an iso-value c, all the cells that intersect with the desired iso-surface must appear
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within the half-open regions defined by x ≤ c and y ≥ c, as shown by the light-grey

region in Figure 2.

4 NEW APPROACH

In this section, we describe where our idea originates from, and what our

approaches are. We have implemented two variants, and each of them will be detailed in

the subsections.

Figure 2. A min-max span space representation of a dataset, where each cell is represented as a

black dot. The grey area corresponds to the region that could satisfy an iso-value query. All the

cells falling into this area intersect with the desired iso-surface. All the dots who have no upper-left

neighbors are marked with circles. These marked dots could be included in the final seed-set.

4.1 Upper-Left Envelope

Our new approach, though a surface-based algorithm, is in fact mainly inspired by

the min-max span space representation of a dataset. Recall that a seed-set of a dataset

should bear the property that every iso-surface intersects with it. As most surface-based

approaches try to identify a seed-set from a dataset’s original domain, whatwe are really

curious about is how a seed-set behaves in the domain of the min-max span space. The

first thing came to our mind is a line, which is parallel to the line of x = y. Apparently

such a line satisfies the requirement: every iso-surface intersects with it. However, when
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a dataset is represented by points distributed on the upper-left half plane of the first

quadrant, it is not clear what line to choose and how a particular line corresponds to a

seed-set. It did not take long before we realize that a good candidate for a seed-set does

exist, and it is in fact in the forms of envelope lines. In terms of a min-max span space

representation, we observe that all the cells, represented as points, which have no cells on

their upper-left side, could be included in the seed-set. Figure 2 demonstrates such an

observation. In this figure, those points marked in circles could be included in the seed-

set. This claim can be proved by the following. Assuming S represents the set of all the

points (cells) which do not have any other points on their upper-left side, then this S must

intersect with every iso-surface. As long as an iso-surface passes through a dataset, it

must intersect with this data by at least one cell, say cell a. If a cell belongs to S, then we

are done; otherwise there must exist another cell, say cell b, which is on the upper and

left-hand side of cell a. From Figure 2 we know that cell b must also intersect with this

iso-surface. If cell b belongs to S, we are done; otherwise the procedure just described

can be carried out recursively, and due to the fact that the cell number of a dataset is

finite, we will eventually reach a cell which belongs to S, thus proving our claim. For

convenience, we will call these cells in S to be on the upper-left envelope. This is in fact

a special case of the so called maxima finding problem [1, 5], and it can be shown that an

algorithm of worst-case time complexity of O(N log N) could be easily derived. However,

we will not go into the details of this, because in the end we have found an even simpler

and faster algorithm to fulfill our goal.

Although it seems that we have found a perfect seed-set this way, there are still

two imperfections. First, as will be shown later, these cells are not optimal, i.e., it is still

possible to further reduce the cell number of such a seed-set without hindering its

capability to intersect with all the iso-surfaces. Second, such cells still do not form a

complete seed-set. Let us consider a 2D counterexample given in Figure 3. In this figure,

the corresponding intervals for cell A, B and C are (40, 50), (50, 60), and (30, 70),

respectively. It is clear that only cell C is on the upper-left envelope while the other two

are not. However, if we only retain cell C into the seed-set, then for the iso-value query

whose iso-value falling in the interval of (40, 50), there is no way of propagating from

cell C to cell A, as cell B does not intersect with any value of this range. On a deeper

thought, what is really missing here is the consideration of connectivity. Put it more
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concretely, cell B should be retained so that the iso-surface propagation can reach cell A

through cell B.

Figure 3. A 2D counterexample. The numbers are the corresponding scalar values defined on the

grid points.

Figure 4. A cell reduction process. On the left are connected components of the original dataset,

while on the right the reduced components of the dataset.

4.2 Variant 1

To take connectivity into account, in variant 1 we design our algorithm as the

following. We start by conceptually constructing a graph in the min-max span space

where two cells (or points in the min-max span space) are connected by an edge if they

are connected through a face. From this graph we try to remove unnecessary cells, as

shown in Figure 4. In this Figure, a given cell can be removed from the graph if it has an

upper-left neighbor, because such a neighbor would have a smaller minimum and a larger

maximum, therefore at run time, the cell can be re-discovered by the surface propagation

process from this neighbor. Notice that once a cell is removed, the edges connected to it

should be transitively adjusted, as shown in this Figure. However, from the

implementation point of view, it is in fact not necessary to construct the connected graph,
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instead, we could start with treating the whole dataset as a seed-set, and then gradually

remove the unwanted cells one by one. Most importantly, the algorithm requires only

one pass of scan through all the cells then a seed-set can be constructed. For each cell,

we just need to check all of its six face-connected neighbors to see if it has an upper-left

neighbor in the min-max span space representation, or equivalently, if it has a neighbor

whose range contains this cell’s range. If so, thecell can be removed from the seed-set;

otherwise, it should be retained. The reason behind this is straightforward: if a cell has a

face-connected neighbor which appears to its upper and left-hand side in the min-max

span space’s representation, it meansthat neighbor has a containing range of the current

cell. This inclusiveness property guarantees that once that neighbor is preserved in the

seed-set, the current cell could always be re-connected through the corresponding face.

Notice the transitive property is implicitly preserved during this process, thus requiring

no other bookkeepings or particular data structures. In other words, each cell could be

checked individually without worrying its neighbors’ existence. However, there is one 

exception. If cell A and cell B are adjacent with each other by a face, and if cell A and

cell B have exactly the same range while all other neighbors of cell A and B do not have

containing ranges, then our algorithm will remove cell B from cell A’s point of view,and

remove cell A from cell B’s point of view, as shown in Figure 5. One simpleand less

precise approach to deal with this exception is to first assign a unique ID to each cell, and

then when it comes to a cell’s removal, only the cell with a larger IDvalue is removed.

However, this simple approach may produce a less optimal result, as shown in Figure 5,

where both cell 1 and cell 5 will be retained, while only one of them should be preserved.

To correct this, first we leave all such cells intact, then on each such connected region, as

shown in Figure 5, we apply the cell propagation process as if we are to find all the

intersected cells with an iso-surface. During this process, we could identify the cell with

the smallest ID, and thus only one such cell should be retained, while all others could be

safely discarded.

There is one more optimization that we could perform to further reduce the size of

a seed-set. Recall in the iso-surface propagation process, the intersected cells found in the

seed-set are used to propagate and to locate all the intersected cells with the desired iso-

surface(s). Usually this propagation is performed through face connectivity as shown in

Figure 6(a). However, as an iso-surface could also pass through an edge, shown in Figure
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6(b), or touch a vertex, shown in Figure 6(c), we could modify the surface propagation

process accordingly. This modification also affects the seed-set construction as the

definition of a neighbor for a cell gets changed. By taking the new definition into account,

our algorithm requires little modification while most of it remains unchanged.

Figure 5. A 2D example where several cells with exactly the same range are connected together.

Figure 6. Different connectivity between cells.

Note that there is one more modification to be done during the surface propagation

process so that our approach is feasible. Refer to Figure 7 for a 2D illustration. In this

Figure, the curves represent the iso-surfaces corresponding to iso-value of 25. According

to a normal surface traversal, such as the one used in Bajaj et al. [2], each cell only

checks to see if any one of its faces intersects with the iso-value, surface propagation will

then proceed along the direction of that face (edge or vertex) neighbor. Without

modification, it is apparent that a surface propagation starting from cell C will not reach

cell A, as the face between cell A and B does not intersect with the given iso-value. To
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correct this, we just need to make little modification to the surface propagation process: if

the range of any face neighbors of the current cell intersects with the given iso-value,

surface propagation should proceed along the direction of that neighbor.

Figure 7. A 2D example of iso-surface(s). Here the given iso-value is 25.

There is still another optimization that we could perform and sometimes it can

significantly reduce the skeleton size produced by the original volume thinning algorithm.

The trick is that when the eight scalar values of a non-isolated cell are all equal to one

constant value, this cell can be removed, as this constant value must also appear on one

of its neighbors. At run time, when this particular iso-value is requested, one of its

neighbors would be included, either because that neighbor belongs to the seed-set, or is

reached by the propagation from the seed-set, and thus this cell will eventually be

included as well. Therefore this cell does not need to be present in the seed-set. To be

combined with the previous checking process, in our implementation, we further group

all the adjacent cells with a constant value into a macro cell, which could bear an

arbitrary shape. When a macro cell is determined to be removed, all the cells within a

macro cell are removed simultaneously; otherwise, only one cell within the macro cell is

retained, as it suffices to do so. Because of this grouping, from this point on, unless we

mention explicitly, all the cells are implicitly macro cells.

4.3 Variant 2

Recall the method proposed by Bajaj et al. [2], where a cell could be eliminated if

the union of ranges of its faces (edges or vertices) contains its range. By making use of

this property, Bajaj et al. applied a sweeping algorithm to obtain an approximate seed-set.



CHUAN-KAI YANG AND CHIANG-HAN HUNG

Similar to the modification we just made during the surface propagation process, we

could modify Bajaj et al.’s cell removal property to the following. If theunion of ranges

of a cell’s neighbors contains its range, then this cell can be removed.There are two

issues regarding the implementation of variant 2. First, unlike the case in variant 1 where

each cell could perform its check individually, the check for the union of neighbor’s

ranges may not be performed independently, i.e., we would need to worry about the

existence of a cell’s neighbors in variant 2. Second, as shown inBajaj et al. [2], the order

in which the checks are performed could affect the resulting seed-set size.

Figure 8. An example showing the cyclicity of the relationship between a cell and its neighbors.

Figure 9. The path compression process, where (a) is the initial configuration and (b) is the

configuration after performing the search on cell f.

To address the first issue, Figure 8 demonstrates an example, where the range

union of cell A and cell C could be used to cover cell D, which therefore could be

removed. However, the range union of cell B, cell C, and cell D could also be used to

cover cell A, and this indicates that cell A is also removable. Nevertheless, it is clear that

in this case only one of cell A and cell D could be removed due to this cyclicity.

For the convenience of discussion, if a cell, say cell A, whose range could be

covered by the union of the ranges of two of its neighbors, say cell B and cell C, then we
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call cell B and cell C the parents of cell A, while cell A a child of cell B and cell C.

Notice that this relationship is transitive, that is, cell B and cell C may have their own

parent(s) as well. For this, we call cell D an ancestor of cell A if there is a transitive

parent-child relationships between them, while cell A a descendant of cell D. In

particular, we call an ancestor cell which has no parents a terminal ancestor. To avoid

cyclicity, a naive implementation would be to associate each child cell with a link list of

all of its parents, therefore to check for the cyclicity of a cell, say cell E, we search

recursively to see if cell E appears in any of the link lists of its parent(s) and ancestor(s).

If so, cell E cannot be removed; otherwise cell E is marked as removable and all its

neighboring cells that are used for this removal are put in cell E’s link list accordingly. 

Empirical results show that it is possible to have a long transitive relationship between

two cells therefore the checking for cyclicity could be time-consuming.

To improve on the checking efficiency, we borrow the idea of path compression

from the operations of disjoint sets [17]. The basic concept can be best illustrated by the

example shown in Figure 9, where we compare the configuration before and after

performing the search on cell f. Note here each arrow points from a child to its parent(s),

therefore in this Figure, cell b could be used to cover both cell c and cell d, while cell d

alone could be used to cover cell e, as explained in the variant 1 algorithm. After path

compression, essentially the search path from a descendant to its ancestor is dramatically

shortened, thus speeding up the searching performance significantly.

Figure 10 demonstrates how we combine the variant 1 and variant 2 algorithms

together. Figure 10(a) is the result after performing the variant 1 algorithm, where each

region (marked with different colors) has only one terminal ancestor, denoted by two

concentric circles. Figure 10(b) is the result after performing the path compression within

each region, while Figure 10(c) shows the result after compressing the search path on the

terminal ancestor cell in region C.

To deal with the second issue, i.e., the order of checks to be performed, and at the

same time without resorting to a nonlinear-time algorithm as was done by Kreveld et al.

in [11], we perform the union checks according to the number of neighboring cells used

for removing a given cell. This is simply due to the fact that a cell with a larger such

number may suggest a larger dependency on others, therefore its check is deferred for

better reduction efficiency. Although it seems sorting is un-avoidable during the process,
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in practice, the number of neighboring cells are often around a dozen or so, therefore

counting sort could be used, thus making the total complexity still linear in this phase.

So far, the only thing left unexplained is, for a given cell, say cell B, how to find

the least number of neighbors such that their range union could cover the range of cell B?

For brevity, we will refer to this subset finding process as a finding minimal cover

process, and it can be shown that a minimal cover could be found by a recursive process.

Figure 11 demonstrates such a process, where in the representation of a min-max span

space, all the neighbors of cell B are represented by points in the four quadrants with cell

B being the center. If there is a cell in B’ssecond quadrant, it means that cell B has an

upper-left neighbor, so cell B can be removed, and the corresponding process is already

described in the variant 1 algorithm. Assuming there exist no cells in its second quadrant,

and then the next step is to find the union of neighbors, and because the cells in the

fourth quadrant are all dominated by cell B, we only need to check the cells in the first

and the third quadrants. We first locate the leftmost cell in the first quadrant, say cell A,

and the topmost cell in the third quadrant, say cell C. Note here according the definition

of min-max span space, cell A’s x-coordinate and y-coordinate must be larger than those

of cell B, therefore by finding cell A this way, we could maximize the chance of covering

cell B, similar reason holds for finding cell C, as can be seen in Figure 11(a). If cell C’s

y-coordinate is larger than cell A’s x-coordinate, the check for union would terminate

immediately, as the union of cell A and C are sufficient to cover cell B. On the other hand,

if cell A’s x-coordinate is larger than cell C’s y-coordinate, and since cell A is the one

with the minimal x-coordinate, this means that there exists a gap between the maximum

of the cell C and the minimum of cell A, therefore it is hopeless that the union of cell B’s 

neighbors could cover cell B. However, in the case where cell A’s x-coordinate is less

than cell B’s y-coordinate and cell C’s y-coordinate larger than cell B’s x-coordinate, the

union of the range of cell A and C could reduce the uncovered range of cell B, therefore

the remaining uncovered range could be viewed a new virtual cell whose range could be

recursively checked by the union of those cells in B’s fourth quadrant, such as cell D in

Figure 11(b). Note that this recursive process for each cell could only take constant time

as the number of neighbors for a cell is bounded by 26 (the effective number is even

much smaller), equivalently, for each cell the number of being a neighbor of others is

also fixed, therefore the overall linear-time complexity in this phase is guaranteed.
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Figure 10. The path compression process in our algorithm.

Figure 11. The procedure for finding a minimal cover.

4.4 Combined with Volume Thinning

In addition to proposing a new approach, another goal of this paper is to combine

this approach with existing approaches to seek for an even smaller seed-set. According to

Itoh et al. [10], their volume thinning approach performs much better than their previous
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extrema graph approach [9], due to the elimination of boundary cells. Therefore, we re-

implement their volume thinning algorithm so that we could compare and combine their

approach with ours.

Noticing that as volume thinning and our approach bear different perspectives

towards seed-set reduction, we could combine these two approaches and see how the

merged algorithm performs. To do that, we first generate a skeleton by using the volume

thinning approach, then apply the procedure that we mentioned in the last sub-section,

i.e., each cell in the skeleton checks to see if it could use the variant 1 or variant 2

algorithm to remove itself.

As a last remark, after the seed-set is constructed, we could build an interval tree

from the cells in the seed-set to further speed up the seed cells searching at run time, just

as proposed by [2]. Because a seed-set is usually relatively smaller compared with the

original dataset, the cell searching for finding the intersected cells in the seed-set could

become extremely fast. Note that although these intersected cells still need to be

propagated to find all the cells intersected with a desired iso-surface, nevertheless, the

asymptotic time complexity is only roughly proportional to the number of cells

intersected with the iso-surface. That is, we only spent minimal effort on those non-

intersected cells, and at the same time could enumerate cells in an order which facilitates

the generation of triangle strips to enhance the rendering throughput.

5 PERFORMANCE RESULTS

We have implemented our system on a Pentium 4 2.8GHz machine with 1GByte

memory, running the Windows XP operating system. We have collected and tested

totally 10 volume datasets. Table 1 lists the characteristics of these 10 datasets. We also

list the number of extremum points for reference. # of Skeleton Cells are the results by

using Itoh et al.’s volume thinning algorithm, which we havere-implemented for the

purpose of comparison. For convenience, we use Whole_n to denote the results of

running the variant n algorithm exclusively on the whole dataset, and similarly

Skeleton_n the results of running the variant n algorithm exclusively on the resulting

skeletons produced by the volume thinning approach. In addition, Whole_1+2 and

Skeleton_1+2 denote the cases where we run both the variant 1 and 2 algorithms on the
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whole datasets and on the resulting skeletons with the volume thinning approach,

respectively.

Table 1. Characteristics of input datasets used in this performance study.

Table 2. Comparison of the number of seed cells between the original skeleton and the new

skeleton after removing the constant cells.

Table 2 shows the impact of removing those cells with constant values. As shown

by the Aneurism dataset in this Table, the number of skeleton cells could become roughly

three times smaller. This phenomenon is not completely occidental, as shown by Table 1,

since there are only 256 possible values to be distributed to 127×127×127 cells, there

may still exist some homogeneous regions which were not removed by the volume

thinning process.

Table 3 demonstrates how connectivity affects the seed-set size, by using the

variant 1 algorithm running on the whole dataset. In this paper, as each cell is a cube,
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therefore it has 6 faces, 12 edges and 8 vertices. As shown by Figure 6, if we allow

connectivity to be extended from face-connectivity, denoted by F, to face-connectivity

plus edge-connectivity, denoted by F + E, or together with vertex-connectivity, denoted

by F + E + V, for both the seed-set reduction and surface propagation, then the seed-set

size could be reduced up to four times smaller, as demonstrated by the Hydrogenatom

dataset in this table. As this table suggests, from this point on all the reported numbers

are based on the F + E + V connectivity. Note that for the numbers reported here, we use

the non-macro cell version, and by comparing with Table 5, where macro cells are used,

the further reduction of seed-set size is evident.

Table 3. Comparison of the number of seed cells using the variant 1 algorithm running on the

whole dataset, under different connectivity implementations for all the datasets.

Table 4. The resulting number of seed cells using the variant 1 algorithm, under different

traversal orders, for the dataset of Hydrogenatom.

As expected, with different traversal orders, the seed-set size may vary as well.

Although we have mentioned in Section 4 that the variant 1 algorithm requires only one

pass through the dataset, it does not always produce the same seed-set size when the

traversal order is changed. Table 4 demonstrates that, for the dataset of Hydrogenatom,

different traversal directions may cause a large variation on the resulting seed-set size.

For example, the number corresponds to the direction of XYZ is about four times as big

as the one corresponding to the direction of XZY. Note here the direction of XYZ means

that, when we traverse the cells, we visit plane by plane of cells with their Z-coordinates
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being in an ascending order, while within each plane we visit cells row by row with their

Y-coordinates being in an ascending order. Other traversal directions can be derived

similarly.

The reason for such a difference could be illustrated using Figure 12. In Figure

12(a), cell A could be eliminated by using either cell B or cell D. In Figure 12(b), when

the traversal order is from top to bottom, we may choose cell B; on the other hand, cell D

may be picked if we use the bottom-to-top order as in Figure 12(c). We have tested all of

our datasets for multiple directions and so far only the Hydrogenatom dataset presents

such a large variation in terms of the resulting seed-set size.

Figure 12. Applying different traversal orders when using the variant 1 algorithm.

Table 5 juxtaposes the resulting seed-set sizes by using different algorithms, where

Itoh, Bajaj1, Climb and Sweep represent the results by the work in [10] (volume

thinning), [2] (fast iso-contouring), greedy climbing and sweep filtering in [3] (different

version of fast iso-contouring), respectively. Due to the limit of time, we did not get to

re-implement Bajaj et al.’s method in [2, 3], so we extracted the numbers from their

papers and downloaded the only dataset available, i.e., the HIPIP dataset, for comparison.

There are several relationships to observe from this table. First, the numbers in Whole_1

and Skeleton_1 are all less than the numbers in Whole_2 and Skeleton_2. This is simply

because in the variant 2 algorithm we look for more chances to delete a cell, and the test

in the variant 1 algorithm is just a special case of that in the variant 2 algorithm. Second,

the numbers in Skeleton_1 and Skeleton_2 are smaller than those in Itoh as the former

two are built on top of the latter to seek further possibility of reduction. The most



CHUAN-KAI YANG AND CHIANG-HAN HUNG

intriguing part is the comparison between Whole_1+2 and Skeleton_1+2, where

Whole_1+2 wins in all the cases except for the Hydrogenatom dataset. And the same

time, this dataset is also where Whole_1 lost most when compared with Itoh. After a

detailed analysis we found that because the Hydrogenatom dataset presents thin layers of

equal values which may be pricked into fragmented parts by the Whole_1+2 approach,

therefore it can be handled more properly with the volume thinning approach.

Table 5. Comparison of the number of seed cells among Itoh et al.’s volume thinning 

approach, Bajaj et al.’s three versions of iso-contouring, and several variants of our approach

running on the whole datasets or on the skeletons produced by Itoh et al.’s approach,under

the connectivity of face, edge and vertex.

For the comparison between Whole_1+2 and Bajaj1, the reason why Whole_1+2

wins all the time is also self-evident, as explained previously that the tests performed in

Bajaj1 can be deemed as a special case of what is performed in Whole_1+2. Overall,

Whole_1+2 can reduce the dataset size to be up to 140 times smaller (as shown by the

CT Head dataset) when compared with Itoh, and up to 40 times smaller (as shown by the

CT Head dataset) when compared with Bajaj1. The only available numbers from Bajaj et

al. in [3] are for the HIPIP dataset. Although their climbing algorithm could produce a

seed-set about 60% smaller than ours, it requires a higher time complexity, i.e.,

Θ(NlogN); on the other hand, the much faster linear-time sweeping algorithm generates a

seed-set much larger than ours. Overall speaking, our linear-time algorithm still looks

very appealing. Note here for saving space, we use W_n, S_n, W_1+2, and S_1+2 to

denote Whole_n, Skeleton_n, Whole_1+2, and Skeleton_1+2, respectively, in Table 5.

As mentioned previously, in the variant 2 algorithm we need to perform the

cyclicity check, where transitive dependency may be involved. Therefore to perform the

full cyclicity check the incurred overheads may be indefinite, thus defeating the purpose
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as a linear-time algorithm, although in practice the maximal depth required for cyclicity

check is well within reach. Table 6 demonstrates the effectiveness of using path

compression instead of the naive link list implementation. As can be seen from the table,

the performance improvement can be up to twenty times, as shown by the Aneurism

dataset.

Table 6. Timing comparison in the variant 2 algorithm by using different approaches for

cyclicity check across all datasets. Numbers are in seconds.

Table 7 presents the timing breakdown of using the Whole_1+2 approach, so far

the best implementation of ours. Here Init(ial) Proc(essing) time includes program

initializations, removing cells with constant values, etc., while W_1, W_2 and Total

represent the timing for performing the variant 1, variant 2 algorithms, and the total

execution time, respectively. The main proportion of time spent on W_2 is for checking

the cyclicity, therefore is data dependent. For example, in the Hydrogenatom dataset,

because the ancestor/descendant relationships are “deep” and common, mostof the time

is attributed to the cyclicity check. Note here we do not report the triangle interpolation

time, as the focus of this paper is on the seed-set generation. We also do not include the

skeleton generation time by the volume thinning approach as it is not our contribution. In

fact, our code is still far from being optimized. Nevertheless, these results show that with

a moderate class of PCs, all the seed-sets could be generated with a reasonable speed.

And most importantly of all, these constructed seed-sets could be stored or even used for

building an interval tree to quickly answer repeatedly iso-value queries.

To prove correctness, we have also verified the resulting seed-sets produced by all

variants of our algorithms. We have devised a way to check if a seed-set is indeed a seed-

set by testing all possible iso-values. For datasets with only integer scalar values, we just
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need to test each integer within the scalar value range. For datasets with floating point

scalar values, we first fnd the union of all floating point scalar values defined on the grid

points of the original data, then exhaustively perform iso-value query with values

coming only from the set of union. It can be shown that by testing such values, we could

enumerate all possible cases of how all the cells of a dataset intersect with all possible

iso-surfaces.

Table 7. Timing breakdown for the seed-set construction process across all datasets.

Numbers are in seconds

6 CONCLUSION AND FUTURE WORK

We have proposed and implemented a new approach to identify a seed-set from a

volume dataset. This approach, though very simple, takes just linear time of

preprocessing to construct a relatively small seed-set. Most importantly, due to its

simplicity, it could also be combined with other seed-set finding approaches. In particular,

our approach could be applied together with the volume thinning approach, to yield an

even better result than applying volume thinning alone. Overall our algorithm could

reduce the seed-set size to be up to 140 times smaller when compared with the original

volume thinning approach. There are two directions that we plan to pursue in the future.

First, we will generalize our work to handle tetrahedral volume datasets as well.

Although tetrahedral volume datasets present more complex topology, it is in fact

simpler than the case of regular volume datasets, in terms of face, edge and vertex

connectivity. Second, just like the work done by Kreveld et al. [11], we will work on

deriving a linear-time approximation algorithm that could find a seed-set for a volume
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dataset with a provably small size.
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